SUR UN PROBLEME DE DYNAMIQUE DES POPULATIONS

OUMAR TRAORE, ALBERT OUEDRAOGO
U.F.R./SEA-UNIVERSITE OUAGADOUGOU
03 BP-7021-OUAGADOUGOU 03
BURKINA-FASO

ABSTRACT. In this paper, a model for the dynamic of an age structured population is considered, in which the density y depends on the time t, the age a and the spatial variable x belonging to Ω where Ω is the limited environment. Moreover, we assume that there are exchanges through the boundary $\partial \Omega$.

Here we prove the existence and the uniqueness of the solution.

RÉSUMÉ. Dans ce travail, on considère une population structurée en âge, répartie dans un domaine Ω. La dynamique de la population est décrite au moyen d’une fonction y, dépendant des variables (t, a, x) où t est le temps, a l’âge et x est la position géographique dans Ω. On suppose qu’il y a échange d’individus entre la population et le milieu extérieur, et on montre alors l’existence et l’unicité de la solution.

1. INTRODUCTION

On s’intéresse à une population structurée en âge, répartie dans un domaine Ω de frontière assez régulière. La dynamique de la population est décrite au moyen d’une fonction y, dépendant des variables (t, a, x) où t est le temps, a l’âge et x est la position géographique dans Ω.

Si on suppose que la variation de la population est due à la mort et à la migration, la densité y sera solution d’équation aux dérivées partielles de type

$$
\frac{\partial y}{\partial t} + \frac{\partial y}{\partial a} - \Delta y + \mu y = 0
$$

où Δ désigne le laplacien, ν le vecteur normal unitaire extérieur au domaine Ω de \mathbb{R}^N, $N \geq 1$, et μ dépendant de (t, a, x) représente le taux de mortalité.

Si à l’instant initial, on a une densité y_0, on doit avoir $y(0, a, x) = y_0(a, x)$ presque partout dans $Q_\omega = [0, T] \times \Omega$ où ω est l’espérance de vie maximale de l’espèce.

Enfin, on suppose que l’on a un processus de naissance de type

$$
y(t, 0, x) = F \left(\int_0^\omega \beta y da \right) = \left(\int_0^\omega \beta y da \right) \Phi \left(\int_0^\omega \beta y da \right)
$$

pour presque tout $(t, x) \in Q_T = [0, T] \times \Omega$, β étant le taux de natalité. Un exemple de ce type de processus de naissance est le processus de naissance dans une population de poissons et de tortues, où $\int_0^\omega \beta y da$ représentera le nombre d’œufs produits et Φ une fonction donnant la proportion d’œufs qui arriveront à maturité.

Bon nombre d’auteurs se sont intéressés à ces types de problèmes; cf.[3],[4],[5],[6],[8],[9].

AMS classification: 92D25
Mots clés: population structure en âge et en espace, semi-groupe d’opérateurs linéaires.

Dans [8] et [9], les auteurs se sont intéressés au cas où v est identiquement nulle et μ et β dépendent seulement de l’âge a.

Le cas $v = 0$ et $\phi = \text{constante}$ est étudié de façon approfondie dans [4] et [6].

Dans ce travail, on étudie le cas où v n’est pas identiquement nulle, μ et β dépendant des variables t, a et x.

Le plan de ce travail est le suivant: dans le second paragraphe, nous introduisons les notations, quelques résultats préliminaires, les hypothèses du travail et l’énoncé du résultat principal; dans le troisième paragraphe, on donnera la preuve du résultat principal.

2. Notations, hypothèses, résultats

2.1. Notations. Nous noterons $U =]0, T[\times]0, \omega[,$ $V = L^2(U; H^1(\Omega))$ où $H^1(\Omega)$ représente l’espace de Sobolev d’ordre 1 et $L^2(U; H^1(\Omega))$ l’espace des fonctions mesurables sur U à valeurs dans $H^1(\Omega)$ qui sont de carré intégrable sur U.

On note $Q = U \times \Omega$.

En identifiant $H = L^2(Q)$ à son dual, on peut écrire $V \subset H \subset V'$ où V' est l’espace des fonctions continues sur U à valeurs dans $H^1(\Omega)$.

On note $\Lambda_0 = \partial_t + \partial_a$ où ∂_t et ∂_a représentent respectivement les dérivées partielles par rapport à t et a dans $\mathcal{D}'(U; (H^1(\Omega))^n)$, où $\mathcal{D}'(U; (H^1(\Omega))^n)$ est l’ensemble des applications linéaires continues de $\mathcal{D}(U)$ défini dans $H^1(\Omega)$.

On notera $dtda = dU$, $dQ = dtdadx$ et $d\Sigma = dtdad\sigma$ où $d\sigma$ est la mesure induite par dx sur $\partial\Omega = \Gamma$.

Notons $W(U) = \{\varphi \in L^2(U; H^1(\Omega)) : \Lambda_0\varphi \in L^2(U; (H^1(\Omega))^n)\}$.

On notera ν la normale unitaire extérieure à Ω.

2.2. Notion de solution. On considère le système

$$(S_0) \begin{cases}
\partial_t y + \partial_a y - \Delta y + \mu y = 0 \\
\frac{\partial \phi}{\partial \nu} = v \\
y(0, a, x) = y_0(a, x) \\
y(t, 0, x) = F(\int_0^t \beta yda)
\end{cases}$$

Définition 2.1. On appelle solution de (S_0) une fonction y de $W(U)$ vérifiant

(i) $y \geq 0$ presque partout dans Q;

(ii) pour tout $\phi \in V$,

$$\int_U \langle \Lambda_0 y(t, a), \phi\rangle_{(H^1(\Omega))^n, H^1(\Omega)} dtda + \int_Q (\nabla y \nabla \phi + \mu y \phi) dQ = \int_\Sigma v\phi|_\Sigma d\Sigma;$$

(iii) $y(0, a, x) = y_0(a, x)$ pour presque tout $(a, x) \in Q_\omega$;

(iv) $y(t, 0, x) = F(\int_0^t \beta yda)$ presque partout dans Q_T.

Remarque 2.2. La notation ∇ désigne le gradient par rapport à x. La condition (i) est naturelle car y est une densité de population.

Multiplier la première équation de (S_0) par une fonction test de $\mathcal{D}(U, C^1(\Omega))$, puis en admettant que y est assez régulière (cf. [6]), on obtient (ii) par intégration par parties.

2.3. Hypothèses. Dans tout ce travail, on supposera que

(H_1): Ω est un ouvert de \mathbb{R}^N, $N = 1, 2$, ou 3 dont la frontière Γ est une variété différentiable de classe C^∞, Ω étant localement d’un seul côté de Γ;
(H_2): $\mu \in L^\infty(Q)$ et $\mu \geq 0$ presque partout dans Q;

(H_3): $\beta \in L^\infty(Q)$ avec $\beta \geq 0$ presque partout dans Q;

(H_4): $F(\alpha) = \alpha \Phi(\alpha)$ est une fonction positive, Lipschitzienne de rapport K_F;

(H_5): $v \in L^2(\Sigma), v \geq 0$ presque partout sur Σ;

(H_6): $y_0 \in L^2(Q_\omega), y_0 \geq 0$ presque partout dans Q_ω.

2.4. Résultats préliminaires. Enonçons un résultat de trace, fondamental pour la suite.

Lemme 2.3. Pour tout $y \in W(U)$, on peut définir la trace en $t = t_0$ dans $L^2(Q_\omega)$. On peut également définir la trace en $a = a_0$ dans $L^2(Q_T)$. Les applications “trace” sont continues pour les topologies faible et forte.

De plus, on a la formule d'intégration par parties: pour tous $y, z \in W(U)$,

$$
\int_U \langle \Lambda_0 y, z \rangle dU = \int_{Q_\omega} [(zy)(T, a, x) - (zy)(0, a, x)] d\omega dx + \int_{Q_T} [(zy)(t, \omega, x) - (zy)(t, 0, x)] d\tau dx - \int_U \langle \Lambda_0 z, y \rangle dU.
$$

Ce résultat se montre en adaptant la méthode de [7] (chapitre 1.§2.2).

On a aussi le lemme suivant:

Lemme 2.4. On suppose (H_1). Soit $\gamma_0 : H^1(\Omega) \rightarrow L^2(\Gamma)$ l’application trace définie par $\gamma_0(\varphi) = \varphi|_{\Gamma}$. Alors si $\varphi \in H^1(\Omega)$ avec $\varphi \geq 0$ presque partout dans Ω, on a $\gamma_0(\varphi) \geq 0$ presque partout sur $\Gamma = \partial \Omega$.

Preuve:

a) Remarquons d'abord que si $v_n \rightarrow v$ dans $L^2(\Gamma)$ et si $v_n \geq 0$ presque partout sur Γ alors $v \geq 0$ presque partout sur Γ. En effet, $(v_n - v) = (v_n - v^+) + v^-$ avec $v^+ = \max(v, 0)$ et $v^- = \max(-v, 0)$ alors

$$
\|v_n - v^+\|_{L^2(\Gamma)} \leq \|v_n - v\|_{L^2(\Gamma)}
$$

et donc $v_n \rightarrow v^+$. Par suite $v^+ = v$ presque partout sur Γ.

b) Remarquons aussi que si $\varphi \geq 0$ presque partout dans Ω et $\varphi \in H^1(\Omega)$, on peut construire par régularisation et troncature une suite (ϕ_n) d’éléments de $\mathcal{D}(\mathbb{R}^N)$ telle que

- pour tout $n \in \mathbb{N}$, $\phi_n \geq 0$ dans Ω;

- $\phi_n|_{\overline{\Omega}} \in \mathcal{D}(\Omega)$ et $\phi_n|_{\overline{\Omega}} \rightarrow \varphi$ dans $H^1(\Omega)$ (cf. par exemple [2]).

Alors par définition de γ_0, on a

$$
\gamma_0(\varphi) = \lim_{n \rightarrow \infty} \gamma_0(\phi_n|_{\overline{\Omega}});
$$

or $\gamma_0(\phi_n|_{\overline{\Omega}}) \geq 0$ presque partout sur Γ, alors d’après a) $\gamma_0(\varphi) \geq 0$ presque partout sur Γ. □

Considérons la famille $(G(t))_{t \geq 0}$ d’opérateurs définis sur X par

$$
(G(h)\varphi)(t, a) = \begin{cases}
\varphi(t - h, a - h) & \text{pour presque tout } (t, a) \in [h, T] \times [h, \omega] \\
0 & \text{sinon}
\end{cases}
$$

où

$$
X = L^2(U; H^1(\Omega)) \quad \text{(resp. } X = L^2(U; L^2(\Omega)) \text{ ou } X = L^2(U; (H^1(\Omega))^*))
$$
Considérons également l’opérateur non borné Λ de domaine

$$D(\Lambda, X) = \{ \varphi \in X : \Lambda_0 \varphi \in X; \varphi(0, \cdot) = 0 \text{ presque partout dans } [0, \omega[\}$$

$$\varphi(\cdot, 0) = 0 \text{ presque partout dans } [0, T[\}$$

défini par $\Lambda_0 = -\Lambda_0 \varphi$ pour tout $\varphi \in D(\Lambda, X)$. On vérifie sans difficulté que $(G(t))_{t \geq 0}$ est un semi-groupe de classe C^0 sur X de générateur infinitésimal Λ. De plus, on prouve que $\|G(s)\|_{\mathcal{L}(\mathcal{H}, \mathcal{H})} \leq 1$.

Considérons maintenant la forme bilinéaire définie pour presque tout $(t, a) \in U$ par

$$B(t, a, \varphi, \phi) = \int_{\beta} [\nabla \varphi \phi + \pi \varphi \phi] \, dx$$

pour $(\varphi, \phi) \in H^1(\Omega) \times H^1(\Omega)$ où $\pi = \mu + \lambda, \lambda > 0$. On voit que pour presque tout $(t, a) \in U$, $B(t, a, \cdot, \cdot)$ est continue et coercive sur $H^1(\Omega) \times H^1(\Omega)$. Il existe alors $A(t, a) \in (H^1(\Omega))^t$ pour presque tout $(t, a) \in U$ tel que $B(t, a, \varphi, \phi) = \langle A(t, a) \varphi, \phi \rangle$. Pour $\varphi \in L^2(U, H^1(\Omega))$, on définit l’opérateur M_p par $M_p \varphi = 0(t, a) \mapsto A(t, a) \varphi(t, a)^h$ qui est évidemment mesurable sur U à valeurs dans $(H^1(\Omega))^t$. Par définition de $A(t, a)$, il existe $c > 0$ tel que $\langle M_p \varphi, \varphi \rangle_{L^2(U, H^1(\Omega))} \geq c \| \varphi \|_{L^2(U, H^1(\Omega))}^2$.

Alors compte tenu de tout ce qui précède, on tire de [7] que $\Lambda_0 + M$ est un isomorphisme de $V \cap D(\Lambda, V^t)$ dans V^t. On peut donc déduire que

Théorème 2.5. Le problème de trouver $y \in W(U)$ tel que pour tout $\varphi \in L^2(U, H^1(\Omega))$

$$\left\{ \int_U \langle A_0 y, \phi \rangle dU + \int_Q [\nabla y \nabla \phi + (\mu + \lambda) y \phi] dQ = \int_Q < f, \phi > dQ \right. \left. \begin{array}{c}
\text{presque partout dans } Q_\omega \\
\text{presque partout dans } Q_T
\end{array} \right.$$

avec $f \in L^2(U, (H^1(\Omega))^t)$, admet une solution unique.

Enonçons maintenant le résultat principal de cet article:

Théorème 2.6. Sous les hypothèses $(H_1) - (H_6)$, le problème (S_0) admet une solution unique notée $y(v)$. De plus, quels que soient v_1 et $v_2 \in L^2(\Sigma)$, si $v_1 \leq v_2$ presque partout sur Σ alors $y(v_1) \leq y(v_2)$ presque partout dans Q.

La deuxième assertion signifie que lorsque v est majorée sur Σ, alors $y(v) \in L^\infty(Q)$.

3. Preuve du Théorème 2.6

La preuve sera établie en trois étapes.

Étape 1

Considérons le système:

$$(S_1) \quad \left\{ \begin{array}{l}
\Lambda_0 \xi - \Delta \xi + (\mu + \lambda) \xi = 0 \\
\frac{\partial \xi}{\partial \nu} = \nu \\
\xi(0, a, x) = y_0(a, x) \\
\xi(t, 0, x) = y_1(t, x)
\end{array} \right.$$

où $y_0 \in L^2(Q_\omega), y_1 \in L^2(Q_T)$ et $\nu = e^{-\lambda t} v$.

Nous allons montrer que (S_1) admet une solution unique ξ, i.e qu’il existe un unique $\xi \in W(U)$ tel que

$$(R_0) \quad \int_U \langle A_0 \xi, \varphi \rangle dU + \int_Q (\nabla \varphi \nabla \xi + (\mu + \lambda) \xi \varphi) dQ = \int_\Sigma v \varphi|_\Sigma d\Sigma$$
pour tout \(\varphi \in V \) et

\[
(R_1) \quad \xi(0, a, x) = y_0(a, x) \quad \text{et} \quad \xi(t, 0, x) = y_1(t, x), \quad y_1 \geq 0 \quad \text{presque partout dans} \; Q_T.
\]

Soit \((U_n) \subset \mathcal{D}(Q_\omega)\) et \((W_n) \subset \mathcal{D}(Q_T)\) telle que \(U_n \to y_0\) dans \(L^2(\mathcal{D}(Q_\omega))\) et \(W_n \to y_1\) dans \(L^2(\mathcal{D}(Q_T))\). Soient \(\alpha_2, \alpha_1 \in \mathcal{D}(\mathbb{R})\) tel que \(\alpha_1 = 1\) sur \([0, T]\) et \(\alpha_2 = 1\) sur \([0, \omega]\). Posons

\[
\varphi_n(a, t, x) = \alpha_1(t)U_n(a, x) + \alpha_2(a)W_n(t, x).
\]

On a \(\varphi_n \in C^\infty(\overline{Q})\) et l'on a \(\varphi_n(0, \cdot, \cdot) = U_n \to y_0\) et \(\varphi_n(\cdot, 0, \cdot) = W_n \to y_1\). Posons \(f = f_0 + \Delta \varphi_n - (\mu + \lambda)\varphi_n - \varphi_n\lambda \Delta_0\varphi_n\), où \(f_0\) est l'application définie sur \(V\) par \(f_0(\varphi) = \int_V \varphi\Sigma d\Gamma\). Il est clair que \(f : \varphi \mapsto f_0(\varphi) + \int_Q [\Delta \varphi_n - (\mu + \lambda)\varphi_n - \varphi_n\lambda \Delta_0\varphi_n]dQ\) est continue et linéaire sur \(V\).

Par suite, du Théorème 2.5, on tire l'existence de \(\tilde{\theta}_n \in \mathcal{W}(U)\) pour tout \(n \in \mathbb{N}\) tel que pour tout \(\varphi \in L^2(U, H^1(\Omega))\)

\[
(S_2) \quad \begin{cases}
\int_U \langle \Lambda_0 \tilde{\theta}_n, \varphi \rangle dU + \int_Q [\nabla \tilde{\theta}_n \nabla \varphi + (\mu + \lambda)\tilde{\theta}_n \varphi]dQ \\
\theta_n(0, a, x) = 0 \\
\theta_n(t, 0, x) = 0.
\end{cases}
\]

En posant \(\theta_n = \tilde{\theta}_n + \varphi_n\), on a \(\theta_n \in \mathcal{W}(U)\) et l'on a pour tout \(\varphi \in L^2(U, H^1(\Omega))\)

\[
(S_3) \quad \begin{cases}
\int_U \langle \Lambda_0 \theta_n, \varphi \rangle dU + \int_Q [\nabla \theta_n \nabla \varphi + (\mu + \lambda)\theta_n \varphi]dQ = \int \mathfrak{m} \varphi d\Sigma \\\n\theta_n(0, a, x) = U_n(a, x) \quad \text{pour presque tout} \; (a, x) \in Q_\omega \\
\theta_n(t, 0, x) = W_n(t, x) \quad \text{pour presque tout} \; (t, x) \in Q_T.
\end{cases}
\]

Prenons \(\varphi = \theta_n\) dans la première équation et utilisons la formule d'intégration par parties; on obtient

\[
(R_2) \quad \frac{1}{2} \|\theta_n(T\cdot)\|^2 + \frac{1}{2} \|\theta_n(\cdot, \omega\cdot)\|^2 - \frac{1}{2} \|\theta_n(0, \cdot, \cdot)\|^2 - \frac{1}{2} \|\theta_n(\cdot, 0, \cdot)\|^2 + \|\nabla \theta_n\|^2 + \|\sqrt{\mu + \lambda} \theta_n\|^2 = \int \mathfrak{m} \varphi d\Sigma.
\]

En utilisant l'inégalité de Young et la continuité de l'application trace \(\gamma_0 : H^1(\Omega) \to L^2(\partial \Omega)\) (cf. [7]), on trouve que

\[
(R_3) \quad \int \mathfrak{m} \varphi d\Sigma \leq C \|\varphi\|_{L^2(\Sigma)}^2 + \frac{\inf(1, \lambda)}{2} \|\theta_n\|^2_{L^2(U, H^1(\Omega))}.
\]

On tire de \((R_2)\) et \((R_3)\) que

\[
\frac{\inf(1, \lambda)}{2} \|\theta_n\|^2_{L^2(U, H^1(\Omega))} \leq C \|\varphi\|^2 + \frac{1}{2} \|U_n\|^2 + \frac{1}{2} \|W_n\|^2.
\]

Alors \((\theta_n)\) est bornée dans \(V\).

Maintenant, quels que soient \(\varphi \in H^1(\Omega)\) et \(\theta \in \mathcal{D}(U)\); on a

\[
\int_U \langle \Lambda_0 \theta(t, a), \varphi \times \theta \rangle dU + \int_Q \theta [\nabla \theta \nabla \varphi + (\mu + \lambda)\varphi \theta] dt d\sigma = \int \mathfrak{m} \varphi \gamma d\Sigma;
\]

alors pour presque tout \((t, a) \in U\)

\[
\langle \Lambda_0 \theta(t, a), \varphi \rangle = - \int [\nabla \theta + \mu \theta \varphi] d\sigma + \int \mathfrak{m}(t, a) \varphi |\gamma| d\Sigma.
\]

D'où

\[
\|\Lambda_0 \theta(t, a)\|_{L^2(U, H^1(\Omega))} \leq (\lambda + \mu_\infty) \|\theta(t, a)\| + C \|\mathfrak{m}(t, a)\| \|\varphi\|_{H^1(\Omega)};
\]

alors

\[
\|\Lambda_0 \theta\|_{L^2(U, H^1(\Omega))} \leq (\lambda + \mu_\infty) \|\theta\|_{L^2(U, H^1(\Omega))} + C \|\mathfrak{m}\|_{L^2(\Sigma)}.
\]
Ainsi la suite \((\Lambda_{\theta_n})\) est bornée dans \(L^2(U,(H^1(\Omega))^t)\). Par conséquent on peut en extraire une sous-suite notée toujours \((\Lambda_{\theta_n})\) telle que \((\Lambda_{\theta_n}) \to j\) dans \(L^2(U,(H^1(\Omega))^t)\) et \(\theta_n \to \xi\) dans \(L^2(U,H^2(\Omega))\) et \(\theta_n \to \xi\) dans \(L^2(Q)\), car l'injection de \(L^2(U,H^2(\Omega))\) dans \(L^2(Q)\) est continue. Montrons que \((\theta_n)\) converge dans \(L^2(Q)\). Posons \(\theta^m_n = \theta_m - \theta_n\). La fonction \(\theta^m_n\) vérifie la propriété suivante: pour tout \(\varphi \in L^2(U;V)\)
\[
\begin{align*}
\int_U (\Lambda_{\theta_n} \theta^m_n, \varphi) dU + \int_Q [\nabla \theta^m_n \nabla \varphi + (\mu + \lambda) \theta^m_n \varphi] dQ &= 0 \\
\theta^m_n(0,a,x) &= U_m(a,x) - U_n(a,x) \quad \text{pour presque tout} \quad (a,x) \in Q_\omega \\
\theta^m_n(t,0,x) &= W_m(t,x) - W_n(t,x) \quad \text{pour presque tout} \quad (t,x) \in Q_T
\end{align*}
\]
Prenons alors \(\varphi = \theta^m_n\) dans le système précédent et utilisons la formule d'intégration par parties; on trouve après quelques calculs
\[
\lambda \|\theta^m_n\|^2 \leq \frac{1}{2} \|U_m - U_n\|^2 + \frac{1}{2} \|W_m - W_n\|^2.
\]
Comme \((U_n)\) et \((W_n)\) sont de Cauchy, on tire que \((\theta_n)\) est de Cauchy et donc converge dans \(L^2(Q)\).

Par conséquent \(\theta_n \to \xi\) dans \(L^2(Q)\) et donc \(\Lambda_{\theta_n} \to \Lambda_\xi\) dans \(D'(U,(H^1(\Omega))^t)\). L'injection de \(L^2(U,(H^1(\Omega))^t)\) dans \(D'(U,(H^1(\Omega))^t)\) étant continue, on tire alors de \(\Lambda_{\theta_n} \to j\) dans \(L^2(U,(H^1(\Omega))^t)\) que \(\Lambda_{\theta_n} \to j\) dans \(D'(U,(H^1(\Omega))^t)\).

De l'unicité de la limite on déduit que \(\Lambda_\xi = j \in L^2(U,(H^1(\Omega))^t)\), et donc \(\xi \in W(U)\). Soient \(\varphi \in D(U)\) et \(\phi \in H^1(\Omega)\); alors \(\varphi \otimes \phi \in V\) et par suite
\[
\int_U (\Lambda_{\theta_n} \varphi \otimes \phi) dU + \int_Q [\nabla \varphi \nabla (\varphi \otimes \phi) + (\mu + \lambda) \theta_n (\varphi \otimes \phi)] dQ = \int_\Sigma \overline{\varphi} (\varphi \otimes \phi) |_\Sigma d\Sigma,
\]
soit
\[
- \int_Q \theta_n \Lambda_\xi \varphi \phi dQ + \int_Q [\nabla \varphi \nabla (\varphi \otimes \phi) + (\mu + \lambda) \theta_n \phi] dQ = \int_\Sigma \overline{\varphi} (\varphi \otimes \phi) |_\Sigma d\Sigma
\]
car \(\varphi \in D(U)\).

D'où en passant à la limite
\[
- \int_Q \xi \Lambda_\xi \varphi \phi dQ + \int_Q [\nabla \xi \nabla (\varphi \otimes \phi) + (\mu + \lambda) \xi (\varphi \otimes \phi)] dQ = \int_\Sigma \overline{\varphi} (\varphi \otimes \phi) |_\Sigma d\Sigma,
\]
i.e.
\[
\int_U (\Lambda_\xi \varphi \otimes \phi) dU + \int_Q [\nabla \xi \nabla (\varphi \otimes \phi) + (\mu + \lambda) \xi (\varphi \otimes \phi)] dQ = \int_\Sigma \overline{\varphi} (\varphi \otimes \phi) |_\Sigma d\Sigma.
\]
On en déduit la propriété \((R_0)\) parce que \(D(U) \otimes H^1(\Omega)\) est dense dans \(L^2(U;V)\).

Rappelons que \(\theta_n \to \xi\) dans \(W(U)\). Alors de la continuité des applications trace (cf. Lemme 2.3), on tire que
\[
(R_4) \quad \xi(0,a,x) = y_0(a,x) \quad \text{pour presque tout} \quad (a,x) \in Q_\omega
\]
et
\[
(R_5) \quad \xi(t,0,x) = y_1(t,x) \quad \text{pour presque tout} \quad (t,x) \in Q_T.
\]

Montrons maintenant la positivité de \(\xi\).

Ecrivons \(\xi = \xi^+ - \xi^-\) où \(\xi^+ = \max(\xi,0)\) et \(\xi^- = \max(-\xi,0)\). On a \(\xi^+ \in V\) et \(\xi^- \in V\). En utilisant la densité de \(H^1(Q)\) dans \(V\) et le Lemme 2.3, on montre facilement que si \(\psi \in W(U)\), on a
\[
(R_6) \quad \int_U (\Lambda_\psi \psi^-) dU = -\frac{1}{2} \|\psi^-(T,\cdot,\cdot)\|^2 + \frac{1}{2} \|\psi^-(0,\cdot,\cdot)\|^2 - \frac{1}{2} \|\psi^-(-,\omega,\cdot)\|^2 + \frac{1}{2} \|\psi^-(-,0,\cdot)\|^2.
\]
Notons que
\[(R_7) \quad \int_Q (\nabla\xi \nabla \xi^- + (\mu + \lambda)\xi^-) \, dQ = - \int_Q \left[(\nabla \xi^-)^2 + (\mu + \lambda)(\xi^-)^2 \right] \, dQ. \]

Prenons \(\varphi = \xi^- \) dans \(R_0 \) et utilisons \((R_6) \) et \((R_7) \). On obtient alors :

\[\lambda \|\xi^-\|_{L^2(Q)}^2 \leq \frac{1}{2}\|\xi - (T, \cdot, \cdot)\|^2 - \frac{1}{2}\|\psi - (\cdot, \omega, \cdot)\|^2. \]

D'où \(\xi^- = 0 \) presque partout dans \(Q \). Alors

\[(R_8) \quad \xi = \xi^+ \geq 0 \quad \text{presque partout dans} \quad Q. \]

Vérifions maintenant l’unicité. Si \(\xi_1 \) et \(\xi_2 \) sont deux solutions de \((S_1) \), alors \(\xi = \xi_1 - \xi_2 \) est solution de

\[(S_4) \quad \left\{ \begin{array}{l}
\Lambda_0 \xi - \Delta \xi + (\mu + \lambda)\xi = 0 \\
\frac{\partial \xi}{\partial \nu} = 0 \\
\xi(0, a, x) = 0 \\
\xi(t, 0, x) = 0
\end{array} \right. \]

Multiplions la première équation de \((S_4) \) par \(\xi \) et utilisons la formule d’intégration par parties; on obtient que

\[\frac{1}{2}\|\xi(T, \cdot, \cdot)\|^2 + \frac{1}{2}\|\xi(\cdot, \omega, \cdot)\|^2 + \|\nabla \xi\|^2 + \|\mu + \lambda \xi\|^2 = 0. \]

Alors \(\lambda \|\xi\|^2 \leq 0 \) d'où on déduit que \(\xi = 0 \).

Étape 2

Dans cette étape nous allons montrer que \((S_0) \) admet une solution unique. Posons

\[y_1(t, x) = \left(\int_0^\omega \beta zda \right) \Phi \left(\int_0^\omega \beta e^{\lambda z} da \right) \]

avec \(z \in L^2(Q) \) et \(z \geq 0 \) presque partout dans \(Q \). Il est clair que \(y_1 \in L^2(Q_T) \) et que \(y_1 \geq 0 \) presque partout dans \(Q_T \). Par conséquent, de la première étape on tire l’existence et l’unicité d’une solution du système

\[(S_5) \quad \left\{ \begin{array}{l}
\Lambda_0 \xi - \Delta \xi + (\mu + \lambda)\xi = 0 \\
\frac{\partial \xi}{\partial \nu} = \varphi \\
\xi(0, a, x) = y_0(a, x) \\
\xi(t, 0, x) = \left(\int_0^\omega \beta zda \right) \Phi \left(\int_0^\omega \beta e^{\lambda z} da \right)
\end{array} \right. \]

Par conséquent, à \(z \) on peut associer une unique solution \(\xi \) de \((S_5) \).

On définit l’espace \(L^2(Q)_+ \) par

\[L^2(Q)_+ := \{ \varphi \in L^2(Q), \varphi \geq 0 \quad \text{presque partout dans} \quad Q \} \]

et on note \(\eta \) l’application de \(L^2(Q)_+ \rightarrow L^2(Q)_+ \) qui à \(z \) associe \(\xi \).

Soient \(z_1 \) et \(z_2 \in L^2(Q)_+ \). Soient \(\xi_1 \) et \(\xi_2 \) les solutions correspondantes; on a donc

\[\left\{ \begin{array}{l}
\Lambda_0(\xi_1 - \xi_2) - \Delta(\xi_1 - \xi_2) + (\mu + \lambda)(\xi_1 - \xi_2) = 0 \\
\frac{\partial}{\partial \nu}(\xi_1 - \xi_2) = 0 \\
(\xi_1 - \xi_2)(0, a, x) = 0 \\
(\xi_1 - \xi_2)(t, 0, x) = \left(\int_0^\omega \beta z_1 da \right) \Phi \left(\int_0^\omega \beta e^{\lambda z_1 da} \right) - \left(\int_0^\omega \beta z_2 da \right) \Phi \left(\int_0^\omega \beta e^{\lambda z_2 da} \right)
\end{array} \right. \]
En multipliant la première équation par \(\xi_1 - \xi_2 \), et en utilisant la formule d'intégration par parties, on arrive après quelques calculs à l'inégalité

\[
\lambda \| \xi_1 - \xi_2 \|_{L^2(Q)}^2 \leq \frac{K^2 \omega \beta_\infty^2}{2} \| z_1 - z_2 \|_{L^2(Q)}^2 \quad \text{où} \quad \beta_\infty = \| \beta \|_{L^\infty(Q)}.
\]

Il suffit alors de choisir \(\lambda > \frac{K^2 \omega \beta_\infty^2}{2} \) pour que \(\eta \) soit strictement contractante.

Pour \(\lambda > \frac{K^2 \omega \beta_\infty^2}{2} \), il existe \(z \in L^2(Q) \) telle que \(z \) soit solution de

\[
\begin{aligned}
\Lambda_0 z - \Delta z + (\mu + \lambda) z &= 0 \\
\frac{\partial z}{\partial \mathbf{n}} &= \overline{y} \\
z(0, a, x) &= y_0 \\
z(t, 0, x) &= \left(\int_0^\omega \beta z da \right) \Phi \left(\int_0^\omega \beta e^{\lambda t} da \right)
\end{aligned}
\]

Si on pose \(y = e^{\lambda t} z \), on aura \(\Lambda_0 y = \lambda y + e^{\lambda t} \Lambda_0 z \). Par suite, pour tout \(\phi \in V \),

\[
\int_U \langle \Lambda_0 y, \phi \rangle dU + \int_Q (\nabla y \phi + \mu y \phi) dQ = \int_U \langle \Lambda_0 z, e^{\lambda t} \phi \rangle dU + \int_Q (\nabla z (e^{\lambda t} \phi) + (\mu + \lambda) z (e^{\lambda t} \phi)) dQ;
\]

d'où

\[
\begin{aligned}
\int_U \langle \Lambda_0 y, \phi \rangle dU + \int_Q (\nabla y \nabla \phi + \mu y \phi) dQ &= \int_\Sigma \overline{w} (e^{\lambda t} \phi) \mid_\Sigma d\Sigma \\
&= \int_\Sigma \overline{w} e^{-\lambda t} e^{\lambda t} \phi \mid_\Sigma d\Sigma \\
&= \int_\Sigma \overline{w} \phi \mid_\Sigma d\Sigma
\end{aligned}
\]

et

\[
y(0, a, x) = e^{0} z(t, 0, x) = y_0(a, x)
\]

\[
y(t, 0, x) = e^{\lambda t} z(t, 0, x) = \left(\int_0^\omega \beta z da \right) \Phi \left(\int_0^\omega \beta y da \right) = \left(\int_0^\omega \beta y da \right) \Phi \left(\int_0^\omega \beta y da \right)
\]

Cette fonction \(y \) est donc l'unique solution de (S_0).

Etape 3

Montrons que la solution du système croît avec la valeur de \(\nu \).

On revient au système auxiliaire suivant:

\[
(S_6) \begin{cases}
\Lambda_0 \varphi - \Delta \varphi + (\mu + \lambda) \varphi = 0 \\
\frac{\partial \varphi}{\partial \mathbf{n}} = \overline{y} \\
\varphi(0, a, x) = \varphi_0(a, x) \\
\varphi(t, 0, x) = \left(\int_0^\omega \beta \theta da \right) \Phi \left(\int_0^\omega \beta e^{\lambda t} \theta da \right)
\end{cases}
\]

avec \(\theta \in L^2(Q) \) et \(\lambda > \frac{K^2 \omega \beta_\infty^2}{2} \). Alors l'application \(\eta : \theta \rightarrow \varphi \) est strictement contractante.

Soient \(v_1 \) et \(v_2 \) deux éléments de \(L^2(\Sigma) \) tels que \(0 \leq v_1 \leq v_2 \). Nous allons adopter la méthode utilisée dans [4]. Soit \(\theta \in L^2(Q) \) fixée. Notons \(\eta^i \) l'application de \(L^2(Q) \rightarrow L^2(Q) \) qui à \(\varphi \) associe \(\eta^i(\varphi) \) solution pour \(v = v_i \).

Posons

\[
\begin{cases}
y_{i,0} = \theta \quad \text{pour} \quad i = 1, 2 \\
y_{i,n+1} = \eta^i(y_{i,n})
\end{cases}
\]
Nous allons prouver par récurrence que $y_1^{1n} \leq y_2^{2n}$ presque partout dans Q. En effet pour $n = 1$, posons $y = y_2^{21} - y_1^{11}$; alors y est solution de

$$
\begin{cases}
\Lambda_0 y - \Delta y + (\mu + \lambda)y = 0 \\
\frac{\partial y}{\partial x} = \nu_2 - \nu_1 \\
y(0, a, x) = 0 \\
y(t, 0, x) = 0
\end{cases}
$$

Alors, d’après la deuxième étape, comme $\nu^2 - \nu^1 \geq 0$ presque partout sur Σ on a $y \geq 0$ presque partout dans Q, i.e $y_2^{21} \geq y_1^{11}$ presque partout dans Q.

Supposons que $y_1^{1n} \leq y_2^{2n}$ presque partout dans Q. Posons $\psi = \eta^2(y_1^{1n})$ alors $\psi \leq y_2^{2n+1} = \eta^2(y_2^{2n})$ presque partout dans Q, car $y_1^{1n} \leq y_2^{2n}$. Remarquons que

$$
\begin{cases}
\Lambda_0 \psi - \Delta \psi + (\mu + \lambda)\psi = 0 \\
\frac{\partial \psi}{\partial x} = \nu_2 \\
\psi(0, a, x) = y_0(a, x) \\
\psi(t, 0, x) = \left(\int_0^\omega \beta y_1^{1n} da\right) \Phi \left(\int_0^\omega \beta y_1^{1n} da\right).
\end{cases}
$$

Comme

$$
\begin{cases}
\Lambda_0 y_1^{1n+1} - \Delta y_1^{1n+1} + (\mu + \lambda)y_1^{1n+1} = 0 \\
\frac{\partial y_1^{1n+1}}{\partial x}(0, a, x) = y_0(a, x) \\
y_1^{1n+1}(t, 0, x) = \left(\int_0^\omega \beta y_1^{1n} da\right) \Phi \left(\int_0^\omega \beta e^{\lambda t}y_1^{1n} da\right)
\end{cases}
$$

avec $\nu_1 \leq \nu_2$ presque partout dans Q. On a $y_1^{1n+1} \leq \psi$ presque partout dans Q. Alors on a $y_1^{1n+1} \leq y_2^{2n+1}$ presque partout dans Q. Le résultat annoncé vient par passage à la limite.

4. Conclusion

La notion de solution ainsi obtenue nous permet d’examiner comme dans [1], la contrôlabilité du système (S_0) à l’instant T fixé.

Cela fera l’objet d’un prochain article.

References

E-mail address: traoreoumar@univ-ouaga.bf, a-s-oued@fast-univ-ouaga.bf